Showing posts with label composer2nix. Show all posts
Showing posts with label composer2nix. Show all posts

Friday, November 3, 2017

Creating custom object transformations with NiJS and PNDP

In a number earlier blog posts, I have described two kinds of internal DSLs for Nix -- NiJS is a JavaScript-based internal DSL and PNDP is a PHP-based internal DSL.

These internal DSLs have a variety of application areas. Most of them are simply just experiments, but the most serious application area is code generation.

Using an internal DSL for generation has a number of advantages over string generation that is more commonly used. For example, when composing strings containing Nix expressions, we must make sure that any variable in the host language that we append to a generated expression is properly escaped to prevent code injection attacks.

Furthermore, we also have to take care of the indentation if we want to output Nix expression code that should be readable. Finally, string manipulation itself is not a very intuitive activity as it makes it very hard to read what the generated code would look like.

Translating host language objects to the Nix expression language


A very important feature of both internal DSLs is that they can literally translate some language constructs from the host language (JavaScript or PHP) to the Nix expression because they have (nearly) an identical meaning. For example, the following JavaScript code fragment:

var nijs = require('nijs');

var expr = {
  hello: "Hello",
  name: {
    firstName: "Sander",
    lastName: "van der Burg"
  },
  numbers: [ 1, 2, 3, 4, 5 ]
};

var output = nijs.jsToNix(expr, true);
console.log(output);

will output the following Nix expression:

{
  hello = "Hello",
  name = {
    firstName = "Sander";
    lastName = "van der Burg";
  };
  numbers = [
    1
    2
    3
    4
    5
  ];
}

In the above example, strings will be translated to strings (and quotes will be escaped if necessary), objects to attribute sets, and the array of numbers to a list of numbers. Furthermore, the generated code is also pretty printed so that attribute set and list members have 2 spaces of indentation.

Similarly, in PHP we can compose the following code fragment to get an identical Nix output:

use PNDP\NixGenerator;

$expr = array(
  "hello" => "Hello",
  "name" => array(
    "firstName" => "Sander",
    "lastName => "van der Burg"
  ),
  "numbers" => array(1, 2, 3, 4, 5)
);

$output = NixGenerator::phpToNix($expr, true);
echo($output);

The PHP generator uses a number of clever tricks to determine whether an array is associative or sequential -- the former gets translated into a Nix attribute set while the latter gets translated into a list.

There are objects in the Nix expression language for which no equivalent exists in the host language. For example, Nix also allows you to define objects of a 'URL' and 'file' type. Neither JavaScript nor PHP have a direct equivalent. Moreover, it may be desired to generate other kinds of language constructs, such as function declarations and function invocations.

To still generate these kinds of objects, you must compose an abstract syntax tree from objects that inherit from the NixObject prototype or class. For example, we can define a function invocation to fetchurl {} in Nixpkgs as follows in JavaScript:

var expr = new nijs.NixFunInvocation({
    funExpr: new nijs.NixExpression("fetchurl"),
    paramExpr: {
        url: new nijs.NixURL("mirror://gnu/hello/hello-2.10.tar.gz"),
        sha256: "0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"
    }
});

and in PHP as follows:

use PNDP\AST\NixExpression;
use PNDP\AST\NixFunInvocation;
use PNDP\AST\NixURL;

$expr = new NixFunInvocation(new NixExpression("fetchurl"), array(
    "url" => new NixURL("mirror://gnu/hello/hello-2.10.tar.gz"),
    "sha256" => "0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i"
));

Both of the objects in the above code fragments translate to the following Nix expression:

fetchurl {
  url = mirror://gnu/hello/hello-2.10.tar.gz;
  sha256 = "0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i";
}

Transforming custom object structures into Nix expressions


The earlier described use cases are basically one-on-one translations from the host language (JavaScript or PHP) to the guest language (Nix). In some cases, literal translations do not make sense -- for example, it may be possible that we already have an application with an existing data model from which we want to derive deployments that should be carried out with Nix.

In the latest versions of NiJS and PNDP, it is also possible to specify how to transform custom object structures into a Nix expression. This can be done by inheriting from the NixASTNode class or prototype and overriding the toNixAST() method.

For example, we may have a system already providing a representation of a file that should be downloaded from an external source:

function HelloSourceModel() {
    this.src = "mirror://gnu/hello/hello-2.10.tar.gz";
    this.sha256 = "0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i";
}

The above module defines a constructor function composing an object that refers to the GNU Hello package provided by a GNU mirror site.

A direct translation of an object constructed by the above function to the Nix expression language does not provide anything meaningful -- it can, for example, not be used to let Nix fetch the package from the mirror site.

We can inherit from NixASTNode and implement our own custom toNixAST() function to provide a more meaningful Nix translation:

var nijs = require('nijs');
var inherit = require('nijs/lib/ast/util/inherit.js').inherit;

/* HelloSourceModel inherits from NixASTNode */
inherit(nijs.NixASTNode, HelloSourceModel);

/**
 * @see NixASTNode#toNixAST
 */
HelloSourceModel.prototype.toNixAST = function() {
    return this.args.fetchurl()({
        url: new nijs.NixURL(this.src),
        sha256: this.sha256
    });
};

The toNixAST() function shown above composes an abstract syntax tree (AST) for a function invocation to fetchurl {} in the Nix expression language with the url and sha256 properties a parameters.

An object that inherits from the NixASTNode prototype also indirectly inherits from NixObject. This means that we can directly attach such an object to any other AST object. The generator uses the underlying toNixAST() function to automatically convert it to its AST representation:

var helloSource = new HelloSourceModel();
var output = nijs.jsToNix(helloSource, true);
console.log(output);

In the above code fragment, we directly pass the construct HelloSourceModel object instance to the generator. The output will be the following Nix expression:

fetchurl {
  url = mirror://gnu/hello/hello-2.10.tar.gz;
  sha256 = "0ssi1wpaf7plaswqqjwigppsg5fyh99vdlb9kzl7c9lng89ndq1i";
}

In some cases, it may not be possible to inherit from NixASTNode, for example, when the object already inherits from another prototype or class that is beyond the user's control.

It is also possible to use the NixASTNode constructor function as an adapter. For example, we can take any object with a toNixAST() function:

var helloSourceWrapper = {
    toNixAST: function() {
        return new nijs.NixFunInvocation({
            funExpr: new nijs.NixExpression("fetchurl"),
            paramExpr: {
                url: new nijs.NixURL(this.src),
                sha256: this.sha256
            }
        });
    }
};

By wrapping the helloSourceWrapper object in the NixASTNode constructor, we can convert it to an object that is an instance of NixASTNode:

new nijs.NixASTNode(helloSourceWrapper)

In PHP, we can change any class into a NixASTNode by implementing the NixASTConvertable interface:

use PNDP\AST\NixASTConvertable;
use PNDP\AST\NixURL;

class HelloSourceModel implements NixASTConvertable
{
    /**
     * @see NixASTConvertable::toNixAST()
     */
    public function toNixAST()
    {
        return $this->args->fetchurl(array(
            "url" => new NixURL($this->src),
            "sha256" => $this->sha256
        ));
    }
}

By passing an object that implements the NixASTConvertable interface to the NixASTNode constructor, it can be converted:

new NixASTNode(new HelloSourceModel())

Motivating use case: the node2nix and composer2nix generators


My main motivation to use custom transformations is to improve the quality of the node2nix and composer2nix generators -- the former converts NPM package configurations to Nix expressions and the latter converts PHP composer package configurations to Nix expressions.

Although NiJS and PNDP provide a number of powerful properties to improve the code generation steps of these tools, e.g. I no longer have to think much about escaping strings or pretty printing, there are still many organizational coding issues left. For example, the code that parses the configurations, fetches the external sources, and generates the code are mixed. As a consequence, the code is very hard to read, update, maintain and to ensure its correctness.

The new transformation facilities allow me to separate concerns much better. For example, both generators now have a data model that reflects the NPM and composer problem domain. For example, I could compose the following (simplified) class diagram for node2nix's problem domain:


A crucial part of node2nix's generator is the package class shown on the top left on the diagram. A package requires zero or more packages as dependencies and may provide zero or more packages in the node_modules/ folder residing in the package's base directory.

For readers not familiar with NPM's dependency management: every package can install its dependencies privately in a node_modules/ folder residing in the same base directory. The CommonJS module ensures that every file is considered to be a unique module that should not interfere with other modules. Sharing is accomplished by putting a dependency in a node_modules/ folder of an enclosing parent package.

NPM 2.x always installs a package dependency privately unless a parent package exists that can provide a conforming version. NPM 3.x (and later) will also move a package into the node_modules/ folder hierarchy as high as possible to prevent too many layers of nested node_modules/ folders (this is particularly a problem on Windows). The class structure in the above diagram reflects this kind of dependency organisation.

In addition to a package dependency graph, we also need to obtain package metadata and compute their output hashes. NPM packages originate from various kinds of sources, such as the NPM registry, Git repositories, HTTP sites and local directories on the filesystem.

To optimize the process and support sharing of common sources among packages, we can use a source cache that memorizes all unique source referencess.

The Package::resolveDependencies() method sets the generation process in motion -- it will construct the dependency graph replicating NPM's dependency resolution algorithm as faithfully as possible, and resolves all the dependencies' (and transitive dependencies) metadata.

After resolving all dependencies and their metadata, we must generate the output Nix expressions. One Nix expression is copied (the build infrastructure) and two are generated -- a composition expression and a package or collection expression.

We can also compose a class diagram for the generation infrastructure:


In the above class diagram, every generated expression is represented a class inheriting from NixASTNode. We can also reuse some classes from the domain model as constituents for the generated expressions, by also inheriting from NixASTNode and overriding the toNixAST() method:

  • The source objects can be translated into sub expressions that invoke fetchurl {} and fetchgit {}.
  • The sources cache can be translated into an attribute set exposing all sources that are used as dependencies for packages.
  • A package instance can be converted into a function invocation to nodeenv.buildNodePackage {} that, in addition to configuring build properties, binds the required dependencies to the sources in the sources cache attribute set.

By decomposing the expression into objects and combining the objects' AST representations, we can nicely modularize the generation process.

For composer2nix, we can also compose a class diagram for its domain -- the generation process:


The above class diagram has many similarities, but also some major differences compared to node2nix. composer provides so-called lock files that pinpoint the exact versions of all dependencies and transitive dependencies. As a result, we do not need to replicate composer's dependency resolution algorithm.

Instead, the generation process is driven by the ComposerConfig class that encapsulates the properties of the composer.json and composer.lock files of a package. From a composer configuration, the generator constructs a package object that refers to the package we intend to deploy and populates a source cache with source objects that come from various sources, such as Git, Mercurial and Subversion repositories, Zip files, and directories residing on the local filesystem.

For the generation process, we can adopt a similar strategy that exposes the generated Nix expressions as classes and uses some classes of the domain model as constituents for the generation process:


Discussion


In this blog post, I have described a new feature for the NiJS and PNDP frameworks, making it possible to implement custom transformations. Some of its benefits are that it allows an existing object model to be reused and concerns in an application can be separated much more conveniently.

These facilities are not only useful for the improvement of the architecture of the node2nix and composer2nix generators -- at the company I work for (Conference Compass), we developed our own domain-specific configuration management tool.

Despite the fact that it uses several tools from the Nix project to carry out deployments, it uses a domain model that is not Nix-specific at all. Instead, it uses terminology and an organization that reflects company processes and systems.

For example, we use a backend-for-frontend organization that provides a backend for each mobile application that we ship. We call these backends configurators. Optionally, every configurator can import data from various external sources that we call channels. The tool's data model reflects this kind of organization, and generates Nix expressions that contain all relevant implementation details, if necessary.

Finally, the fact that I modified node2nix to have a much cleaner architecture has another reason beyond quality improvement. Currently, NPM version 5.x (that comes with Node.js 8.x) is still unsupported. To make it work with Nix, we require a slightly different generation process and a completely different builder environment. The new architecture allows me to reuse the common parts much more conveniently. More details about the new NPM support will follow (hopefully) soon.

Availability


I have released new versions of NiJS and PNDP that have the custom transformation facilities included.

Furthermore, I have decided to release new versions for node2nix and composer2nix that use the new generation facilities in their architecture. The improved architecture revealed a very uncommon but nasty bug with bundled dependencies in node2nix, that is now solved.

Tuesday, October 3, 2017

Deploying PHP composer packages with the Nix package manager

In two earlier blog posts, I have described various pieces of my custom web framework that I used to actively develop many years ago. The framework is quite modular -- every concern, such as layout management, data management, the editor, and the gallery, are separated into packages that can be deployed independently, so that web applications only have to include what they actually need.

Although modularity is quite useful for a variety of reasons, the framework did not start out as being modular in the beginning -- when I just started developing web applications in PHP, I did not reuse anything at all. Slowly, I discovered similarities between my projects and started sharing snippets of common functionality between them. Gradually, I learned that keeping these common aspects up to date became a burden. As a result, I developed a "common framework" that I reused among all my PHP projects.

Having a common framework for my web application projects reduced the amount of required maintenance, but introduced a new drawback -- its size kept growing and growing. As a result, many simple web applications that only required a small subset of the framework's functionality still had to embed the entire framework, making them unnecessarily big.

Today, a bit of extra PHP code is not so much of a problem, but around the time I was still actively developing web applications, many shared web hosting providers only offered a small amount of storage capacity, typically just a few megabytes.

To cope with the growing size of the framework, I decided to modularize the code by separating the framework's concerns into packages that can be deployed independently. I "invented" my own conventions to integrate the framework packages into web applications:

  • In the base directory of the web application project, I create a lib/ directory that contains symlinks to the framework packages.
  • In every PHP script that displays a page (typically only index.php), I configure the include path to refer to the packages' content in the lib/ folder, such as:

    set_include_path("./lib/sblayout:./lib/sbdata:./lib/sbcrud");
    

  • Each PHP module is responsible for loading the desired classes or utility functions from the framework packages. As a result, I ended up writing a substantial amount of require() statements, such as:

    require_once("data/model/Form.class.php");
    require_once("data/model/field/HiddenField.class.php");
    require_once("data/model/field/TextField.class.php");
    require_once("data/model/field/DateField.class.php");
    require_once("data/model/field/TextAreaField.class.php");
    require_once("data/model/field/URLField.class.php");
    require_once("data/model/field/FileField.class.php");
    

After my (approximately) 8 years of absence from the PHP domain, I discovered that a tool has been developed to support convenient construction of modular PHP applications: composer. Composer is heavily inspired by the NPM package manager, that is the defacto package delivery mechanism for Node.js applications.

In the last couple of months (it progresses quite slowly as it is a non-urgent side project), I have decided to get rid of my custom modularity conventions in my framework packages, and to adopt composer instead.

Furthermore, composer is a useful deployment tool, but its scope is limited to PHP applications only. As frequent readers may probably already know, I use Nix-based solutions to deploy entire software systems (that are also composed of non-PHP packages) from a single declarative specification.

To be able to include PHP composer packages in a Nix deployment process, I have developed a generator named: composer2nix that can be used to generate Nix deployment expressions from composer configuration files.

In this blog post, I will explain the concepts of composer2nix and show how it can be used.

Using composer


Using composer is generally quite straight forward. In the most common usage scenario, there is typically a PHP project (often a web application) that requires a number of dependencies. By changing the current working folder to the project directory, and running:

$ composer install

Composer will obtain all required dependencies and stores them in the vendor/ sub directory.

The vendor/ folder follows a very specific organisation:

$ find vendor/ -maxdepth 2 -type d
vendor/bin
vendor/composer
vendor/phpdocumentor
vendor/phpdocumentor/fileset
vendor/phpdocumentor/graphviz
vendor/phpdocumentor/reflection-docblock
vendor/phpdocumentor/reflection
vendor/phpdocumentor/phpdocumentor
vendor/svanderburg
vendor/svanderburg/pndp
...

The vendor/ folder structure (mostly) consists two levels: the outer directory defines the namespace of the packages and the inner directory the package names.

There are a couple of folders deviating from this convention -- most notably, the vendor/composer directory, that is used by composer to track package installations:

$ ls vendor/composer
autoload_classmap.php
autoload_files.php
autoload_namespaces.php
autoload_psr4.php
autoload_real.php
autoload_static.php
ClassLoader.php
installed.json
LICENSE

In addition to obtaining packages and storing them in the vendor/ folder, composer also generates autoload scripts (as shown above) that can be used to automatically make code units (typically classes) provided by the packages available for use in the project. Adding the following statement to one of your project's PHP scripts:

require_once("vendor/autoload.php");

suffices to load the functionality exposed by the packages that composer installs.

Composer can be used to install both runtime and development dependencies. Many development dependencies (such as phpunit or phpdocumentor) provide command-line utilities to carry out tasks. Composer packages can also declare which executables they provide. Composer automatically generates symlinks for all provided executables in the: vendor/bin folder:

$ ls -l vendor/bin/
lrwxrwxrwx 1 sander users 29 Sep 26 11:49 jsonlint -> ../seld/jsonlint/bin/jsonlint
lrwxrwxrwx 1 sander users 41 Sep 26 11:49 phpdoc -> ../phpdocumentor/phpdocumentor/bin/phpdoc
lrwxrwxrwx 1 sander users 45 Sep 26 11:49 phpdoc.php -> ../phpdocumentor/phpdocumentor/bin/phpdoc.php
lrwxrwxrwx 1 sander users 34 Sep 26 11:49 pndp-build -> ../svanderburg/pndp/bin/pndp-build
lrwxrwxrwx 1 sander users 46 Sep 26 11:49 validate-json -> ../justinrainbow/json-schema/bin/validate-json

For example, you can run the following command-line instruction from the base directory of a project to generate API documentation:

$ vendor/bin/phpdocumentor -d src -t out

In some cases (the composer documentation often discourages this) you may want to install end-user packages globally. They can be installed into the global composer configuration directory by running:

$ composer global require phpunit/phpunit

After installing a package globally (and adding: $HOME/.config/composer/vendor/bin directory to the PATH environment variable), we should be able to run:

$ phpunit --help

The composer configuration


The deployment operations that composer carries out are driven by a configuration file named: composer.json. An example of such a configuration file could be:

{
  "name": "svanderburg/composer2nix",
  "description": "Generate Nix expressions to build PHP composer packages",
  "type": "library",
  "license": "MIT",
  "authors": [
      {
          "name": "Sander van der Burg",
          "email": "svanderburg@gmail.com",
          "homepage": "http://sandervanderburg.nl"
      }
  ],

  "require": {
      "svanderburg/pndp": "0.0.1"
  },
  "require-dev": {
      "phpdocumentor/phpdocumentor": "2.9.x"
  },

  "autoload": {
      "psr-4": { "Composer2Nix\\": "src/Composer2Nix" }
  },

  "bin": [ "bin/composer2nix" ]
}

The above configuration file declares the following configuration properties:

  • A number of meta attributes, such as the package name, description, license and authors.
  • The package type. The type: library indicates that this project is a library that can be used in another project.
  • The project's runtime (require) and development (require-dev) dependencies. In a dependency object, the keys refer to the package names and the values to version specifications that can be either:
    • A semver compatible version specifier that can be an exact version (e.g. 0.0.1), wildcard (e.g. 1.0.x), or version range (e.g. >= 1.0.0).
    • A version alias that directly (or indirectly) resolves to a branch in the VCS repository of the dependency. For example, the dev-master version specifier refers to the current master branch of the Git repository of the package.
  • The autoloader configuration. In the above example, we configure the autoloader to load all classes belonging to the Composer2Nix namespace, from the src/Composer2Nix sub directory.

By default, composer obtains all packages from the Packagist repository. However, it is also possible to consult other kinds of repositories, such as external HTTP sites or VCS repositories of various kinds (including Git, Mercurial and Subversion).

External repositories can be specified by adding a 'repositories' object to the composer configuration:

{
  "name": "svanderburg/composer2nix",
  "description": "Generate Nix expressions to build PHP composer packages",
  "type": "library",
  "license": "MIT",
  "authors": [
      {
          "name": "Sander van der Burg",
          "email": "svanderburg@gmail.com",
          "homepage": "http://sandervanderburg.nl"
      }
  ],
  "repositories": [
      {
          "type": "vcs",
          "url": "https://github.com/svanderburg/pndp"
      }
  ],

  "require": {
      "svanderburg/pndp": "dev-master"
  },
  "require-dev": {
      "phpdocumentor/phpdocumentor": "2.9.x"
  },

  "autoload": {
      "psr-4": { "Composer2Nix\\": "src/Composer2Nix" }
  },

  "bin": [ "bin/composer2nix" ]
}

In the above example, we have defined PNDP's GitHub repository as an external repository and changed the version specifier of svanderburg/pndp to use the latest Git master branch.

Composer uses a version resolution strategy that will parse composer configuration files and branch names in all repositories to figure out where a version can be obtained from and takes the first option that matches the dependency specification. Packagist is consulted last, making it possible for the user to override dependencies.

Pinpointing dependency versions


The version specifiers of dependencies in a composer.json configuration file are nominal and have some drawbacks when it comes to reproducibility -- for example, the version specifier: >= 1.0.1 may resolve to version 1.0.2 today and to 1.0.3 tomorrow, making it very difficult to exactly reproduce a deployment elsewhere at a later point in time.

Although direct dependencies can be easily controlled by the user, it is quite difficult to control the version resolutions of the transitive dependencies. To cope with this problem, composer will always generate lock files (composer.lock) that pinpoint the exact dependency versions (including all transitive dependencies) the first time when it gets invoked (or when composer update is called):

{
    "_readme": [
        "This file locks the dependencies of your project to a known state",
        "Read more about it at https://getcomposer.org/doc/01-basic-usage.md#composer-lock-the-lock-file",
        "This file is @generated automatically"
    ],
    "content-hash": "ca5ed9191c272685068c66b76ed1bae8",
    "packages": [
        {
            "name": "svanderburg/pndp",
            "version": "v0.0.1",
            "source": {
                "type": "git",
                "url": "https://github.com/svanderburg/pndp.git",
                "reference": "99b0904e0f2efb35b8f012892912e0d171e9c2da"
            },
            "dist": {
                "type": "zip",
                "url": "https://api.github.com/repos/svanderburg/pndp/zipball/99b0904e0f2efb35b8f012892912e0d171e9c2da",
                "reference": "99b0904e0f2efb35b8f012892912e0d171e9c2da",
                "shasum": ""
            },
            "bin": [
                "bin/pndp-build"
            ],
            ...
        }
        ...
    ]
}

By bundling the composer.lock file with the package, it becomes possible to reproduce a deployment elsewhere with the exact same package versions.

The Nix package manager


Nix is a package manager whose main purpose is to build all kinds of software packages from source code, such as GNU Autotools, CMake, Perl's MakeMaker, Apache Ant, and Python projects.

Nix's main purpose is not be a build tool (it can actually also be used for building projects, but this application area is still highly experimental). Instead, Nix manages dependencies and complements existing build tools by providing dedicated build environments to make deployments reliable and reproducible, such as clearing all environment variables, making files read-only after the package has been built, restricting network access and resetting the files' timestamps to 1.

Most importantly, in these dedicated environments Nix ensures that only specified dependencies can be found. This may probably sound inconvenient at first, but this property exists for a good reason: if a package unknowingly depends on another package then it may work on the machine where it has been built, but may fail on another machine because this unknown dependency is missing. By building a package in a pure environment in which all dependencies are known, we eliminate this problem.

To provide stricter purity guarantees, Nix isolates packages by storing them in a so-called "Nix store" (that typically resides in: /nix/store) in which every directory entry corresponds to a package. Every path in the Nix store is prefixed by hash code, such as:

/nix/store/2gi1ghzlmb1fjpqqfb4hyh543kzhhgpi-firefox-52.0.1

The hash is derived from all build-time dependencies to build the package.

Because every package is stored in its own path and variants of packages never share the same name because of the hash prefix, it becomes harder for builds to accidentally succeed because of undeclared dependencies. Dependencies can only be found if the environment has been configured in such a way that the Nix store paths to the packages are known, for example, by configuring environment variables, such as: export PATH=/nix/store/5vyssyqvbirdihqrpqhbkq138ax64bjy-gnumake-4.2.1/bin.

The Nix expression language and build environment abstractions have all kinds of facilities to make the configuration of dependencies convenient.

Integrating composer deployments into Nix builder environments


Invoking composer in a Nix builder environment introduces an additional challenge -- composer is not only a tool that does build management (e.g. it can execute script directives that can carry out arbitrary build steps), but also dependency management. The latter property conflicts with the Nix package manager.

In a Nix builder environment, network access is typically restricted, because it affects reproducibility (although it still possible to hack around this restriction) -- when downloading a file from an external site it is not known in advance what you will get. An unknown artifact influences the outcome of a package build in unpredictable ways.

Network access in Nix build environments is only permitted in so-called fixed output derivations. For a fixed output derivation, the output hash must be known in advance so that Nix can verify whether we have obtained the artifact we want.

The solution to cope with a conflicting dependency manager is by substituting it -- we must let Nix obtain the dependencies and force the tool to only execute its build management tasks.

We can populate the vendor/ folder ourselves. As explained earlier, the composer.lock file stores the exact versions of pinpointed dependencies including all transitive dependencies. For example, when a project declares svanderburg/pndp version 0.0.1 as a dependency, it may translate to the following entry in the composer.lock file:

"packages": [
    {
        "name": "svanderburg/pndp",
        "version": "v0.0.1",
        "source": {
            "type": "git",
            "url": "https://github.com/svanderburg/pndp.git",
            "reference": "99b0904e0f2efb35b8f012892912e0d171e9c2da"
        },
        "dist": {
            "type": "zip",
            "url": "https://api.github.com/repos/svanderburg/pndp/zipball/99b0904e0f2efb35b8f012892912e0d171e9c2da",
            "reference": "99b0904e0f2efb35b8f012892912e0d171e9c2da",
            "shasum": ""
        },
        ...
    }
    ...
]

As can be seen in the code fragment above, the dependency translates to two kinds of pinpointed source objects -- a source reference to a specific revision in a Git repository and a dist reference to a zipball containing a snapshot of the given Git revision.

The reason why every dependency translates to two kinds of objects is that composer supports two kinds of installation modes: source (to obtain a dependency directly from a VCS) and dist (to obtain a dependency from a zipball).

We can translate the 'dist' reference into the following Nix function invocation:

"svanderburg/pndp" = {
  targetDir = "";
  src = composerEnv.buildZipPackage {
    name = "svanderburg-pndp-99b0904e0f2efb35b8f012892912e0d171e9c2da";
    src = fetchurl {
      url = https://api.github.com/repos/svanderburg/pndp/zipball/99b0904e0f2efb35b8f012892912e0d171e9c2da;
      sha256 = "19l7i7adp76bjf32x9a2ykm0r5cgcmi4wf4cm4127miy3yhs0n4y";
    };
  };
};

and the 'source' reference to the following Nix function invocation:

"svanderburg/pndp" = {
  targetDir = "";
  src = fetchgit {
    name = "svanderburg-pndp-99b0904e0f2efb35b8f012892912e0d171e9c2da";
    url = "https://github.com/svanderburg/pndp.git";
    rev = "99b0904e0f2efb35b8f012892912e0d171e9c2da";
    sha256 = "15i311dc0123v3ppa69f49ssnlyzizaafzxxr50crdfrm8g6i4kh";
  };
};

(As a sidenote: we need the targetDir property to provide compatibility with the deprecated PSR-0 autoloading standard. Old autoload packages can be stored in a sub folder of a package residing in the vendor/ structure.)

To generate the above function invocations, we need more than just the properties provided by the composer.lock file. Since download functions in Nix are fixed output derivations, we must compute the output hashes of the downloads by invoking a Nix prefetch script, such as nix-prefetch-url or nix-prefetch-git. The composer2nix generator will automatically invoke the appropriate prefetch script to augment the generated expressions with output hashes.

To ensure maximum compatibility with composer's behaviour, the dependencies obtained by Nix must be copied into to the vendor/ folder. In theory, symlinking would be more space efficient, but experiments have shown that some packages (such as phpunit) may attempt to load the project's autoload script, e.g. by invoking:

require_once(realpath("../../autoload.php"));

The above require invocation does not work if the dependency is a symlink -- the require path resolves to a path in the Nix store (e.g. /nix/store/...). The parent's parent path corresponds to /nix where no autoload script is stored. (As a sidenote: I have decided to still provide symlinking as an option for deployment scenarios where this is not an issue).

After some experimentation, I discovered that composer uses the following file to track which packages have been installed: vendor/composer/installed.json. The contents appears to be quite similar to the composer.lock file:

[
    {
        "name": "svanderburg/pndp",
        "version": "v0.0.1",
        "version_normalized": "0.0.1.0",
        "source": {
            "type": "git",
            "url": "https://github.com/svanderburg/pndp.git",
            "reference": "99b0904e0f2efb35b8f012892912e0d171e9c2da"
        },
        "dist": {
            "type": "zip",
            "url": "https://api.github.com/repos/svanderburg/pndp/zipball/99b0904e0f2efb35b8f012892912e0d171e9c2da",
            "reference": "99b0904e0f2efb35b8f012892912e0d171e9c2da",
            "shasum": ""
        },
        ...
    },
    ...
]

Reconstructing the above file can be done by merging the contents of the packages and packages-dev objects in the composer.lock file.

Another missing piece in the puzzle is the autoload scripts. We can force composer to dump the autoload script, by running:

$ composer dump-autoload --optimize

The above command generates an optimized autoloader script. A non-optimized autoload script dynamically inspects the contents of the package folders to load modules. This is convenient in the development stage of a project, in which the files continuously change, but in production environments this introduces quite a bit of load time overhead.

Since packages in the Nix store can never change after they have been built, it makes no sense to generate a non-optimized autoloader script.

Finally, the last remaining practical issue, is PHP packages providing command-line utilities. Most executables have the following shebang line:

#!/usr/bin/env php

To ensure that these CLI tools work in Nix builder environments, the above shebang must be subsituted by the PHP executable that resides in the Nix store.

After carrying out the above described steps, running the following command:

$ composer install --optimize-autoloader

is simply just a formality -- it will not download or change anything.

Use cases


composer2nix has a variety of use cases. The most obvious one is to use it to package a web application project with Nix instead of composer. Running the following command generates Nix expressions from the composer configuration files:

$ composer2nix

By running the following command, we can use Nix to obtain the dependencies and generate a package with a vendor/ folder:

$ nix-build
$ ls result/
index.php  vendor/

In addition to web applications, we can also deploy command-line utility projects implemented in PHP. For these kinds of projects it make more sense generate a bin/ sub folder in which the executables can be found.

For example, for the composer2nix project, we can generate a CLI-specific expression by adding the --executable parameter:

$ composer2nix --executable

We can install the composer2nix executable in our Nix profile by running:

$ nix-env -f default.nix -i

and then invoke composer2nix as follows:

$ composer2nix --help

We can also deploy third party command-line utilities directly from the Packagist repository:

$ composer2nix -p phpunit/phpunit
$ nix-env -f default.nix -iA phpunit-phpunit
$ phpunit --version

The most powerful application is not the integration with Nix itself, but the integration with other Nix projects. For example, we can define a NixOS configuration running an Apache HTTP server instance with PHP and our example web application:

{pkgs, config, ...}:

let
  myexampleapp = import /home/sander/myexampleapp {
    inherit pkgs;
  };
in
{
  services.httpd = {
    enable = true;
    adminAddr = "admin@localhost";
    extraModules = [
      { name = "php7"; path = "${pkgs.php}/modules/libphp7.so"; }
    ];
    documentRoot = myexampleapp;
  };

  ...
}

We can deploy the above NixOS configuration as follows:

$ nixos-rebuild switch

By running only one simple command-line instruction, we have a running system with the Apache webserver serving our web application.

Discussion


In addition to composer2nix, I have also been responsible for developing node2nix, a tool that generates Nix expressions from NPM package configurations. Because composer is heavily inspired by NPM, we see many similarities in the architecture of both generators. For example, both generate the same kinds of expressions (a builder environment, a packages expression and a composition expression), have a similar separation of concerns, and both use an internal DSL for generating Nix expressions (NiJS and PNDP).

There are also a number of conceptual differences -- dependencies in NPM can be private to a package or shared among multiple packages. In composer, all dependencies in a project are shared.

The reason why NPM's dependency management is more powerful is because Node.js uses the CommonJS module system. CommonJS considers each file to be a unique module. This, for example, makes it possible for one module to load a version of a package from a certain filesystem location and another version of the same package from another filesystem location within the same project.

By contrast, in PHP, isolation is accomplished by the namespace declarations in each file. Namespaces can not be dynamically altered so that multiple versions can safely coexist in one project. Furthermore, the vendor/ directory structure makes it possible to store only one variant of a package.

Despite the fact that composer's dependency management is less powerful makes constructing a generator much more straightforward compared to NPM.

Another feature that composer supports for quite some time, and NPM until very recently is pinpointing/locking dependencies. When generating Nix expressions from NPM package configurations, we must replicate NPM's dependency resolving algorithm. In composer, we can simply take whatever the composer.lock file provides. The lock file saves us from replicating the dependency lookup process making the generation process considerably easier.

Acknowledgments


My implementation is not the first attempt that tries to integrate composer with Nix. After a few days of developing, I discovered another attempt that seems to be in a very early development stage. I did not try or use this version.

Availability


composer2nix can be obtained from Packagist and my GitHub page.

Despite the fact that I did quite a bit of research, composer2nix should still be considered a prototype. One of its known limitations is that it does not support fossil repositories yet.